Human-in-the-Loop Situational Understanding via Subjective Bayesian Networks∗
نویسندگان
چکیده
In this paper we present a methodology to exploit human-machine coalitions for situational understanding. Situational understanding refers to the ability to relate relevant information and form logical conclusions, as well as identifying gaps in information. This process requires the ability to reason inductively, for which we will exploit the machines’ ability to ‘learn’ from data. However, important phenomena are often rare in occurrence, thus severely limiting the availability of instance data for training, and hence the applicability of many machine learning approaches. Therefore, we present the benefits of Subjective Bayesian Networks—i.e. Bayesian Networks with imprecise probabilities—for situational understanding; and the potential role of conversational interfaces for supporting decision makers in the evolution of situational understanding.
منابع مشابه
Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملClassifying the socio-situational settings of transcripts of spoken discourses
In this paper, we investigate automatic classification of the socio-situational settings of transcripts of a spoken discourse. Knowledge of the socio-situational setting can be used to search for content recorded in a particular setting or to select context-dependent models for example in speech recognition. The subjective experiment we report on in this paper shows that people correctly classi...
متن کاملLearning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017